A Note On The Existence Of Positive Solution For A Class Of Laplacian Nonlinear System With Sign-changing Weight
نویسندگان
چکیده
منابع مشابه
Existence of multiple positive solutions for a p-Laplacian system with sign-changing weight functions
A p-Laplacian system with Dirichlet boundary conditions is investigated. By analysis of the relationship between the Nehari manifold and fibering maps, we will show how the Nehari manifold changes as λ,μ varies and try to establish the existence of multiple positive solutions. c © 2007 Elsevier Ltd. All rights reserved.
متن کاملMultiplicity of Positive Solutions of laplacian systems with sign-changing weight functions
In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.
متن کاملa study on construction of iranian life tables: the case study of modified brass logit system
چکیده ندارد.
15 صفحه اولExistence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملExistence of a positive solution for a p-Laplacian equation with singular nonlinearities
In this paper, we study a class of boundary value problem involving the p-Laplacian oprator and singular nonlinearities. We analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ We find lower bounds of critical parameter $lambda^{ast}$. We use the method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics and Computer Science
سال: 2011
ISSN: 2008-949X
DOI: 10.22436/jmcs.03.03.07